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GROWTH OF AGE-0 ATLANTIC MENHADEN (Brevoortia tyrannus) IN TWO TIDAL 

FRESHWATER TRIBUTARIES OF CHESAPEAKE BAY 
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Major Advisor: Dr. Gregory C. Garman, Ph.D. 

Director, Center for Environmental Studies and 

Associate Professor, Department of Biology and 

Research Director, VCU Rice Center 

 

 

 

 

 Few studies have described growth rates of age-0 Atlantic menhaden (Brevoortia 

tyrannus).  Growth rates from tidal freshwater habitats of the Mattaponi and James Rivers, 

Virginia in 2009 were described and compared using otolith microstructural analyses.  Larval 

tidal freshwater growth rates were significantly faster in the culturally eutrophic James River 

when compared to those collected from the Mattaponi River (p-value < 0.001).  Elevated primary 

production within tidal freshwater habitats promotes favorable conditions for larval Atlantic 

menhaden growth.  No differences between river habitats for juvenile growth rates were evident.  
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Comparisons of age-0 growth rates to higher salinity habitats indicate that tidal freshwater 

habitats should be considered essential habitat for age-0 Atlantic menhaden. 

 Keywords: Mattaponi River, James River, tidal freshwater, Atlantic menhaden, Brevoortia 

tyrannus, growth, primary productivity, salinity.
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INTRODUCTION 

Atlantic menhaden (Brevoortia tyrannus; Clupeidae) is an economically valuable and 

ecologically important marine species native to the North American Atlantic slope (Hildebrand, 

1963; Hale et al., 1991).  Atlantic menhaden range from Nova Scotia to Florida (Reintjes, 1969) 

with older individuals concentrated in the northernmost parts of the range and younger age-

classes farther south (Ahrenholz, 1991).  The species serves a vital role in the ecology of marine 

systems by converting primary production into biomass available for apex-predators, making 

Atlantic menhaden an important forage species in the Chesapeake Bay (Ahrenholz, 1991; 

Vaughan, 1991; Jenkins and Burkhead, 1994;).  Many aquatic and avian predators such as 

striped bass (Morone saxatilis), bluefish (Pomatomus saltatrix), Brown Pelican (Pelecanus 

occidentalis), and Osprey (Pandion haliaetus) feed extensively on Atlantic menhaden (Griffin 

and Margraf, 2003; Uphoff, 2003; Viverette et al., 2007).    During the 1980s, abundance of 

Atlantic menhaden in the Chesapeake Bay sharply declined, coincident with evidence of food 

abundance-related stress in Osprey, weakfish (Cynosion regalis), and striped bass (McClean and 

Byrd, 1991; Uphoff, 2003,2006;).  Commercial landings of Atlantic menhaden declined to an 

average of 155,000 metric tons from a peak harvest of 712,000 metric tons over the last 50 years 

(ASMFC, 2010).  Recent research conducted on the status of the Chesapeake Bay population 

resulted in new regulations that limit the annual commercial harvest to 109,000 metric tons 

(Blomo et al., 1988; Luo et al., 2001; ASFMC, 2010).  Despite these management actions, the 

fishery has become increasingly reliant on younger age-classes (Vaughan and Smith, 1988; 

ASMFC, 2010).  Atlantic menhaden are currently not overfished; however overfishing occurred 

during the 2008 season (Fishing mortality above threshold of 2.2; ASMFC, 2010). 
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 Atlantic menhaden migrate between coastal marine waters and adjacent estuaries to 

spawn (Ahrenholz, 1991; Murdy et al., 1997).  Two distinct spawning events -- March to May 

and September to October, occur in offshore waters surrounding the Chesapeake Bay (Murdy et 

al., 1997).  Pelagic eggs drift and are advected into Chesapeake Bay where temperature, salinity, 

and predation are highly variable (Cambalik et al., 1998; Quinlan et al., 1999).  Spatial and 

temporal variation in abundance and distribution of planktonic prey may cause a delay in timing 

of first feeding and mortality for larvae of many teleost species, including Atlantic menhaden 

(Mackas et al., 1985; Miller et al., 1988; Ali et al., 2003).  Atlantic menhaden larvae are 

transported passively upstream into oligohaline and tidal freshwaters, with suitable nursery 

habitats for larval development (June and Chamberlin, 1959; Ahrenholz, 1991).  Larval vertical 

positional changes in the water column and various hydrographic forces encourage advection and 

horizontal transport of Atlantic menhaden from offshore and estuarine waters (Forward et al., 

1996).  Larval and juvenile Atlantic menhaden nursery grounds vary spatially and temporally 

depending upon changes in plankton availability (Friedland et al., 1989; Friedland et al., 1996).  

Age-0 Atlantic menhaden frequently occur in areas of freshwater or low salinity (Massman et al., 

1954; Rogers et al., 1984; Rozas and Hackney, 1984).  Atlantic menhaden are one of the most 

abundant pelagic fish in Chesapeake Bay and postlarvae have been observed in tidal fresh water 

reaches of the James and Mattaponi Rivers, Virginia (Massmann et al., 1954; Friedland, 1988; 

Murdy et al., 1997; Seelig, 2010). 

 Advection of larval Atlantic menhaden into the estuarine turbidity and chlorophyll-a 

maximum of tidal freshwater habitats may benefit recruitment and survivorship significantly 

because of favorable conditions and food abundance (Houde, 1994; Buckaveckas et al., 2011).  

A cohort of a freshwater fish species is 40 times more likely to survive past the juvenile stage 
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metamorphosis than a typical cohort of a marine fish because of decreased stage duration 

(Houde, 1994).  Jung and Houde (2003) demonstrated that the amount of freshwater delivered to 

Chesapeake Bay has a direct positive relationship with bay-wide fish biomass, potentially a 

response to increased availability of tidal freshwater habitats and a resulting strong year-class of 

Atlantic menhaden (Houde, 2009; Kimmel et al., 2009).  Atlantic menhaden larvae documented 

within the Chesapeake Bay range between 30 and 100 days of age 14 and 34 mm fork length 

(Reintjes and Pacheco, 1966; Warlen, 1994; Warlen et al., 2002; Light and Able, 2003).  The 

capacity for Atlantic menhaden to increase consumption of phytoplankton in addition to 

zooplankton is facilitated by substantial increases in complexity and efficiency of the alimentary 

tract and gill rakers (June and Carlson, 1971; Friedland et al., 2006).  Atlantic menhaden residing 

in tidal freshwaters grow until approximately age-1 before emigrating to pelagic habitats; 

emigration occurs synchronously with increased concentrations of plankton, thereby reducing the 

stress on juvenile fish during out migration (Cushing, 1975; Friedland, 1988; Houde and 

Harding, 2009).  Growth and development of age-0 Atlantic menhaden in tidal freshwater 

habitats remains unknown with no published study investigating potential benefits. 

Estuarine and riverine nursery grounds are essential habitats for age-0 Atlantic menhaden 

and recruitment to the fishery (Friedland et al., 1996).  Larval survival is a major regulator of 

recruitment to the adult population (‘critical period’ Hjort, 1914; ‘match-mismatch’ Cushing, 

1975).  Larval fish may experience enhanced recruitment success in tidal freshwater ecosystems 

particularly because of the nursery habitats which provide shelter from predators and foraging 

habitats (North and Houde 2001).  Although larvae metamorphose into juveniles at varying 

salinities, those developing in low salinity waters are less prone to structural abnormalities, 

suggesting low salinity waters are advantageous for development (Lewis, 1966). 
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During residency, age-0 Atlantic menhaden have the potential to consume approximately 

1-119 percent of the total annual primary productivity in Chesapeake Bay (Gottlieb, 1998; Luo et 

al., 2001).   Juvenile menhaden consume 6-9% of the annual phytoplankton production in 

various estuaries on the Atlantic Slope and up to 100% of daily primary production (Peters and 

Schaaf, 1981).  Although these publications illustrate the prospective water quality benefits 

supplied by Atlantic menhaden; Lynch et al. (2010) suggested age-0 Atlantic menhaden in 

Chesapeake Bay play a minor role in regards to eutrophication reduction.  There is a significant 

abundance of primary productivity in the tidal freshwater portion of the James River 

(Bukaveckas et al., 2011), potentially enhancing food availability for age-0 Atlantic menhaden.  

However, there are no published studies linking importance of the tidal freshwater habitats to 

improved somatic growth of Atlantic menhaden larvae and juveniles. 

Somatic growth of age-0 Atlantic menhaden is a function of density, recruitment timing, 

temperature, and food availability (Ahrenholz, 1991; Keller et al., 1990).  The growth rate 

potential (GRP) of Atlantic menhaden is positively correlated with the concentration of 

phytoplankton, and the amount of nutrient loading affecting Chesapeake Bay waters because 

growth rates are highest in early June and late summer when nutrient loading may be greatest 

(Brandt and Mason, 2003).  The level of cultural (anthropogenic) and natural eutrophication can 

influence the growth and development of age-0 menhaden by increasing food availability during 

a critical stage of the life cycle (June and Carlson, 1971).  A range of growth rates have been 

reported for larval Atlantic menhaden originating from assorted geographic locations with 

varying salinities using daily otolith microstructure incremental analysis from 0.22 to more than 

0.48 mm d
-1 

(Powell and Phonlor, 1986; Maillet and Checkley, 1991; Warlen, 1992; Warlen et 

al., 2002; Houde and Secor, 2009).  Although many publications have attributed variation of age-
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0 Atlantic menhaden growth rates to cohort density sampled, timing of recruitment, temperature, 

or food availability, there are no published literature investigating the potential advantage of tidal 

freshwater nursery habitats. 

The primary objective of this study is to describe the somatic growth rates of age-0 

Atlantic menhaden in two tidal freshwater rivers using otolith incremental analysis.  A second 

objective determined if an increased state of eutrophy, due to anthropogenic nutrient inputs, 

affects growth rates.  Specifically, the hypothesis that age-0 Atlantic menhaden have a higher 

growth rate in the culturally eutrophic James River than in the naturally pristine Mattaponi River 

was tested.  The final objective of this study was to determine if tidal freshwater habitats are 

beneficial to larval and juvenile Atlantic menhaden growth rates compared to growth rates from 

higher salinities.  Specifically, the hypothesis that age-0 Atlantic menhaden will exhibit a higher 

rate of growth in tidal freshwater when compared to other published studies from high salinity 

habitats was tested. 
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MATERIALS AND METHODS 

 

Study Area 

Age-0 Atlantic menhaden were sampled in tidal freshwater reaches of the James and 

Mattaponi Rivers, Virginia.  For the purposes of this study, tidal freshwater was defined as 

salinity less than 1 ppt at time of sampling (Odum, 1988).  The James River is one of the largest 

rivers of the Southeastern United States, flowing east from the mountains of Virginia at the 

confluence of the Jackson and Cowpasture Rivers for about 540 km before draining into the 

Chesapeake Bay (Benke and Cushing, 2005).  The headwaters of the Mattaponi River begin in 

Caroline County as a small non-tidal stream and increases in width into a tidal river with 

numerous wetlands by West Point where it combines with the Pamunkey River to form the York 

River (Benke and Cushing, 2005).  The James River is used for commerce, navigation and 

industry (point source and non-point source pollution) enhancing productivity and the state of 

eutrophy.  The absence of significant anthropogenic inputs to the Mattaponi River watershed 

reduces the level of eutrophy. 

Field collection 

 Larval and juvenile Atlantic menhaden were collected using equipment in progression as 

the fish became increasingly mobile: 0.5 m bongo nets with 505 µm mesh fished approximately 

0.5m from the surface, boat push-netting (1.0 x 1.2m net, 0.64 cm mesh), boat electrofishing 

(Smith Root, pulsed DC), and use of gill nets or trawls.  Tidal freshwater reaches of the 

Mattaponi and James Rivers were sampled at least twice a month between 24 February and 20 

July 2009.  Sampling on the Mattaponi River occurred from Walkerton, Virginia downstream to 
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the Gleason marsh above West Point, Virginia.  Samples from the James River were collected 

from various locations from the Hopewell, Virginia downstream to just below Claremont, 

Virginia.  Specimens were placed in ice and frozen in river water upon arrival to the laboratory 

to reduce any error with fish length estimates prior to otolith extraction. 

Otolith Preparation and Extraction 

Otolith microstructure analysis has been used extensively in age and growth studies on 

many fish, as first introduced by Panella (1971).  Validity of using otolith microstructural 

analysis is based upon two assumptions: initial increment formation takes place at a known time 

and that each increment thereafter is deposited at a known rate (Geffen, 1987). Atlantic 

menhaden deposit their initial otolith increment 3 days post-hatch, and the increments are 

deposited at a rate of one per day independent of food availability (Lewis et al. 1972; Nelson et 

al. 1977; Maillet and Checkley, 1989).  Therefore, Atlantic menhaden are a suitable candidate for 

otolith microstructure analysis. 

Atlantic menhaden were considered as larvae after reaching the prejuvenile stage when 

the fish have the minimum adult fin ray complement but have not assumed the adult body form 

(Jones, 1978; Reintjes 1969).  Juveniles had the adult body form, hardened ventral scutes, and 

pigmented scales (Jones, 1978; Able and Fahey, 1998).  Samples were thawed using cold water 

and total lengths (TL) were measured to the nearest 0.1mm using calipers and weight (W) was 

measured to the nearest 1mg.  Sagittal otoliths were extracted from each fish using a dissection 

microscope (Nikon SMZ 800) following Secor et al.(1991).  Up to 20 larvae were selected 

randomly from each collection.  Otoliths were cleaned, polished, and mounted on slides using 

thermoplastic mounting media (crystal bond) and viewed under a compound light microscope at 

200 x magnification.  The otoliths from juvenile fish were ground, polished using 0.3 micron 
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alumina powder, and read in the sagittal plane (Secor et al., 1991).  Digital images of each whole 

otolith or plane were recorded using a Nikon D70 SLR camera to enhance precision in reading 

the otoliths with increased contrast (using Microsoft Picture Manager).   

Otolith Increment Count Precision 

  A complete daily increment on the otolith is a bipartite structure composed of a 

translucent and a discontinuous (opaque) zone (Campana and Neilson, 1985).  Otolith daily 

increments were enumerated by a single reader and as a measure of precision, a second 

experienced reader examined a randomly selected subsample of each collection (James and 

Mattaponi River).  Precision was measured by comparing the capability of the readers to 

consistently reach the same count estimation on the same otolith.  Precision was assessed with 

the coefficient of variation and a paired t-test between readers (CV; Zar, 1999). 

Growth Analysis 

Age estimates of larval and juvenile Atlantic menhaden were calculated as increment 

count plus three days (Maillet and Checkley, 1991).    Separate linear regressions were fit to the 

Atlantic menhaden length-at-age data from each river for larval and juvenile fish.  A Gompertz 

non-linear equation has often been used to describe the entirety of larval growth of Atlantic 

menhaden from 4mm to ~40mm (Warlen, 1992; Warlen et al., 2002; Houde and Secor, 2009).  

However, linear regression is commonly applied to express age and growth at specific lengths 

and ages (Warlen, 1992).  Growth rate for the range of lengths is represented by the slopes of 

regression lines and are expressed in mm day
-1

.  Linear regressions were performed using the 

software package R version 2.8.1 (lm function, R Core Development Team 2010, Vienna, 

Austria).  Slopes of the linear regressions between rivers were compared independently using the 

Student’s t-test for both larval and juvenile samples.  Growth rates were deemed significantly 
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different for p < 0.05.  If not significantly different, slopes (growth rates) of the two rivers were 

combined and regressed to compare the growth rate of tidal freshwater populations to higher 

salinities. 

 Average growth rate was also calculated for each fish to represent the entire range of 

growth for each fish (Maillet, 1991): 

                                  

where 5.0 is the total length at which the yolk is completely absorbed post-hatch (Jones, 1978; 

Ahrenholz 1991; Able, 1998), TL is the length of fish at collection, and Age is the estimated age 

of the individual.  Individuals were grouped into monthly cohorts based on hatch date estimates 

and an analysis of variance was used to compare the mean absolute growth rates for each month. 
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RESULTS 

 

Collections 

A total of 697 larval and juvenile Atlantic menhaden were collected from various tidal 

freshwater locations on the James and Mattaponi River in 2009 (Figures 1 and 2).  Water 

temperatures from sample reaches on the Mattaponi and James rivers increased from ~6°C in 

February to ~27°C in July.  Salinity ranged from 0.1—7ppt during the sampling period, but fish 

were not collected from river locations above 1 ppt.  As a function of eutrophication, 

Chorophyll-A concentrations were considerably higher in the James River when than the 

Mattaponi River (Table 1).  Fish were captured in both rivers from February to July of 2009 

using various methods of collection (Table 2).  All larval fish were captured using bongo nets 

from February to April, 2009.  Juvenile menhaden were most effectively captured by boat push 

netting (57%) and boat electrofishing (36%) during July sampling collections.  Otoliths were 

extracted from 252 specimens for microstructural age estimation. 

Larval Growth 

 A total of 164 larval fish were aged from the tidal freshwater; Mattaponi (n=95) and 

James Rivers (n=69).  Individual larval menhaden otolith samples were consistently aged to 

within ± 5 days (range 70- 141 days, n=41, Figure 3).  The coefficient of variation was 3.9%.  

Paired t-tests indicate that sagittal otolith increment counts did not differ significantly between 

the first and second readers (t=-0.67, p-value=0.51, Figure 4). 

Slopes of the regression lines from scatter plots of larval fish aged from the James and 

Mattaponi Rivers represent the tidal freshwater residence growth rate (mm d
-1

).  The growth 
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rates for larval fish during tidal freshwater residency (mm d
-1

) differed significantly between 

Mattaponi and James Rivers (t= 4.35, p<0.001; Figure 5).  Larval fish collected from the James 

River exhibited a significantly higher growth rate (0.1 mm d
-1

) compared to those from the 

Mattaponi River (0.07 mm d
-1

). 

Larval fish aged by reader 1 were placed into monthly hatch date cohorts and individual 

growth rates were calculated.  Individual growth rates were averaged based on hatch months and 

increased from October 2008 to January 2009(Figure 6).  Pooled averaged individual growth 

rates from the James and Mattaponi River larval fish, representing tidal freshwater averaged 

growth rates, were between 0.25 and 0.34 mm d
-1

, respectively.  Averaged monthly cohort 

growth rates increased from 0.29 mm d
-1

 during November 2008 to 0.34 mm d
-1

 from those fish 

hatched in January of 2009. 

Juvenile Growth 

 A total of 88 juvenile fish were aged from the tidal freshwater Mattaponi (n=52) and 

James Rivers (n=36).  Otoliths from several fish were either fractured, overground, or deemed 

unreadable and were removed from the study.  Individual juvenile menhaden otolith samples 

were consistently aged by both readers to within ± 42 days (range 139-310 days, n=21; Figure 7).  

The coefficient of variation was 15.4%.  Paired t-tests indicate that sagittal otolith whole 

structure increment counts differed significantly between the first and second readers (t=3.73, p-

value=0.009, Figure 7). 

Individuals (n=88) were placed into 5mm length bins to stabilize variation and the growth 

rate was calculated based on the linear regression of average age and average length within each 

bin.  James River juvenile fish exhibited a significantly higher growth rate (0.96 mm d
-1

) when 
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compared to that of the Mattaponi River fish (0.56 mm d
-1

; Figure 8; p-value < 0.01).  Size 

ranges of juvenile menhaden collections from each river were not equally distributed posing a 

weakness for comparisons between river growth rates.    However, the discrepancy in size and 

age classes between rivers suggest that juveniles from the James River collections were hatched 

earlier (Hatch range: 13 September 2008 to 22 December 2008) than those captured from the 

Mattaponi (Hatch range: 21 December 2008 – 14 February 2009; Table 4).  A collective range of 

growth rates during tidal freshwater residency was created for juveniles from the Mattaponi and 

James River because the collections represent identical salinity regimes. This range is intended 

for comparisons to published literature from higher salinity habitats (0.56 – 0.96 mm d
-1

). 

 Due to a lack of precision when estimating ages of juvenile fish, average monthly growth 

rates were not calculated because the error weakens any potential conclusions.  
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DISCUSSION 

 

Introduction 

 This is the first published study to describe age-0 growth rates of Atlantic menhaden 

during residency in tidal freshwater habitats of Virginia and one of a few published descriptions 

of growth utilizing whole-structure otolith microstructural analysis.  Previous studies have 

described most of larval and juvenile growth from varying salinities and geographic locations 

(Lewis et al., 1972; Maillet and Checkley, 1991; Warlen, 1992; Ahrenholz et al., 1995; Houde 

and Secor; 2009).  This study also represents a preliminary study investigating primary 

production as a potential factor affecting age-0 growth rates during tidal freshwater residency.  

Growth rates of larvae and juveniles in tidal freshwaters were comparable to those previously 

found in higher salinities (Maillet and Checkley, 1991; Warlen, 1992; Houde and Secor, 2009). 

For comparison purposes, the present study describes growth rates from individuals 

captured during the late-larval (pre-juvenile) and juvenile stanzas of early life history as per 

Lewis et al. (1972). Lewis et al. (1972) collected Atlantic menhaden from various locations in 

the White Oak River estuary, North Carolina and described age-0 growth as three separate 

stanzas with inflection points corresponding to larval (30 mm), pre-juvenile (38 mm), and 

juvenile growth (above 40 mm).  During the late-larval stage, length increases slowly because 

the fish are developing adult characteristics (Lewis et al, 1972; Warlen, 1992).  Here pre-juvenile 

and late-larvae will be considered larvae growth. 
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Eutrophication and Primary Production 

To address the primary hypothesis that age-0 growth rates are higher in the James River 

than those of the Mattaponi River due to increased nutrient inputs, larval growth rates from the 

James River (0.10 mm d
-1

) were significantly higher than those found from the Mattaponi River 

(0.07mm d
-1

; p-value < 0.001).  Juvenile growth rates from the James River (0.96 mm d
-1

) were 

significantly higher than those found from the Mattaponi River (0.56 mm d
-1

; p-value < 0.01).   

The tidal freshwater reach of the James River exhibits an abundance of primary 

production (Buckaveckas et al., 2011) substantially higher in comparison to the Mattaponi River 

during sampling months (Chl-a, Table 1).  Higher primary productivity (Chl-A, Table 1) evident 

in the sampling reach of the James River may have increased the growth rates of age-0 Atlantic 

menhaden by providing an abundance of food.  These areas have been identified as the spatial 

extent of hydrographic features that retain larval fish within tidal freshwater regions known as 

the Chlorophyll-A maximum and estuarine turbidity maximum (North and Houde, 2001, 2003; 

Buckaveckas et al., 2011).  During development, the gill raker apparatus becomes more complex 

and increases efficiency of grazing on planktonic organisms (June and Carlson, 1971; Friedland 

et al., 2006).  The organic matter (planktonic organisms) of the James River has been quantified 

as being more abundant than nutritious (Buckaveckas, 2010); potentially indicating that food 

availability and not quality may be a controlling factor for age-0 growth.  These results support 

the hypothesis that elevated primary production within the tidal freshwater portion of a system is 

advantageous to age-0 growth rates. 
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Salinity 

Salinity is a factor in age-0 development of Atlantic menhaden (June and Chamberlin, 

1959; Lewis, 1966; Wilkens and Lewis, 1971; Hettler, 1976; Ahrenholz, 2000).  Ahrenholz 

(2000) reported that age-0 growth rates in low salinity treatments (0.2-0.8 mm d
-1

) were 

significantly faster than those from the high salinity treatment (< 0.2 mm d
-1

).  Other laboratory 

experiments show that age-0 Atlantic menhaden are expected to exhibit behavior (increased 

activity) favorable for a faster metabolism and growth rate while inhabiting salinities less than 

10ppt (Hettler, 1976).  While low salinity waters are not critical for development (June and 

Chamberlin, 1959), low salinity habitats provide optimal conditions for successful development 

of larvae into the juvenile stage (Lewis, 1966; Wilkens and Lewis, 1971).  

The effect of salinity on larval and juvenile growth rates of Atlantic menhaden from 

tributaries of Chesapeake Bay was unknown.  Several studies have investigated larval and 

juvenile growth in higher salinity waters (Maillet and Checkley, 1991; Warlen, 1992; Ahrenholz 

et al., 1995; Houde and Secor, 2009).  Growth rates reported by Warlen (1992) for larval Atlantic 

menhaden between ages 61-100 days (0.03-0.07 mm d
-1

) were lower than those found from tidal 

freshwater habitats of the current study (0.07-0.10 mm d
-1

), suggesting that tidal freshwaters are 

advantageous nursery grounds for this interval of  larval growth.  However, the averaged larval 

growth rate range from the current study (0.25 – 0.34 mm d
-1

) are within the range (0.22 – 0.36 

mm d
-1

) reported by Warlen (1992) and Houde and Secor (2009) from higher salinities.  These 

comparisons and findings substantiate the advantage of tidal freshwater nursery grounds for 

larval growth rates 

Growth during the juvenile stage has been characterized as the third stanza in age-0 

growth (Lewis et al., 1972) where growth accelerates after metamorphosis.  No description exists 
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of juvenile Atlantic menhaden growth rates while inhabiting the tidal freshwater reaches of 

Virginia.  The growth rate calculated by this study is comparable methodologically to the work 

by Houde and Secor (2009).  Despite a decreased amount of precision in the current study on 

juvenile age estimations, the range of juvenile growth rate during tidal freshwater residency 

(0.56 – 0.96 mm d
-1

) encompasses the growth rate (0.73 mm d
-1

) described by Houde and Secor 

(2009) from higher salinity habitats in Chesapeake Bay.  However, this overlap or potential 

disparity could be an artifact of differing juvenile age estimation techniques and low precision 

from the current study which may be caused by less frequent and smaller sampling collections.  

Also, from the hatch date ranges of juvenile collections from each river suggests that the sampled 

fish represent separate individuals from different spawning efforts.  An overlap of other growth 

rates for juveniles collected during tidal freshwater residency suggests that lower salinity waters 

are not detrimental to age-0 growth and development of Atlantic menhaden. 

These finding do not provide strong evidence for a reduced or elevated growth rate in 

lower salinity waters.  However, this does demonstrate that tidal freshwater habitats are 

exceptional nursery grounds for age-0 growth and development.  The extent and cause of 

advantageous conditions could be an artifact of decreased predation in tidal freshwater habitats 

(Able, 2005), a preferable salinity regime for development into juveniles (June and Chamberlin, 

1959; Lewis, 1966; Wilkens and Lewis, 1976), or founded entirely on quantity of food made 

available by increased eutrophication in the tidal freshwater systems at the chlorophyll-a and 

estuarine turbidity maximums (North and Houde, 2001, 2003; Buckaveckas et al, 2011). 
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Conclusion 

The data collected, measured and analyzed from this study support the stated hypotheses 

and agree with previously published age-0 Atlantic menhaden growth rate studies.  This study 

also contributes information that was previously undefined.  Upstream transport to the tidal 

freshwater habitats is advantageous for age-0 Atlantic menhaden growth and development.  This 

importance is exemplified by a higher growth rate of the larval stage for which any minor 

variability in marine species larval growth has the potential to register more pronounced effects 

on recruitment to the adult population (Houde, 1994).  Quinlan and Crowder (1999) found that 

late larval and juvenile growth is fundamental for successful recruitment to the overall 

population.  An increased understanding of age-0 growth and development facilitates more 

accurate future decisions regarding the Chesapeake Bay population and fishery.  The importance 

of larval stage dynamics and recruitment to the fishery can be attributed to various environmental 

factors which influence distribution, abundance, and year class strength of Atlantic menhaden 

(Ali et al., 2003).  The findings of this study corroborate the importance of tidal freshwater 

habitats for age-0 recruitment to the adult Atlantic menhaden population.  The Atlantic 

menhaden is a crucial link in the trophic system of Chesapeake Bay and has the potential to 

reduce the amount of resident eutrophy.  The gulf menhaden, B. patronus, has showed an 

increased removal of nitrogen and phosphorous relative to carbon from the Gulf of Mexico 

(Deegan, 1993).  Considering the recent overfished status of the Atlantic menhaden population in 

2008 (ASMFC, 2010), future research should be directed towards identifying specific limiting 

factors for age-0 recruitment and survival to the adult Chesapeake Bay population. To address 

management decisions investigations should include compensatory growth and year class 

strength variability. 
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Table 1.  Summary of water quality constituents of the Mattaponi and James Rivers from range 

of collections, 2009.  Chlorophyll-A concentrations are extracted values and represent 

concentrations from the river channels.  Data is courtesy of DEQ river monitoring data, NOAA 

CBIBS, and VCU Rice Center. 

 

 

  

Feb March April May June July

6.3 — 7.2 9.3 — 10.8 15.6 — 16.8 22.2 — 22.5 26.3 — 27 27.2 — 28.1

5.2 9 16 22 26 27

7.42 ± 1.15 13.03 ± 4.10 7.22 ± 0.70 12.44 ± 7.17 13.53 ± 4.42 22.2 ± 5.40

4.11 ± 4.35 5.71 ± 8.87 2.73 ± 2.01 4.95 ± 1.42 7.93 ± 6.73 4.11 ± 1.47

0.1 — 2.7 0.1 — 2.4 0.1 — 0.5 0.1 — 0.3 0.1 — 0.4 0.1 — 0.4

0.1 — 7.2 0.1 — 4.9 0.1 — 3.0 0.1 — 2.5 0.1 — 2.4 0.1 — 2.0

Salinity (ppt)

James

Mattaponi

Water Temperature (°C)

James

Mattaponi

Chlorophyll-A (ug/L)

James

Mattaponi
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Table 2.  Summary of successful 2009 age-0 collections of larval and juvenile Atlantic 

menhaden from the Mattaponi and James Rivers, Virginia, 2009 (n=697).  Listed are the gear 

types used during sampling events, river ranged sampled (distance is from confluence with 

Chesapeake Bay), total length of fishes collected, and quantity of fishes collected. 

 

 
  

River range 

upstream from CB (km)

24-Feb-09 James Bongo Net 86 31.5 — 32.1 2

4-Mar-09 Mattaponi Bongo Net 56.1 — 75.6 32.2 — 36.6 9

5-Mar-09 James Bongo Net 81 — 86 31.6 — 38.0 132

10-Mar-09 Mattaponi Bongo Net 122 35.5 — 36.1 2

12-Mar-09 Mattaponi Bongo Net 57.6 — 82.4 30.9 — 38.4 400

25-Mar-09 Mattaponi Bongo Net 79.1 — 94.3 32.0 — 37.9 30

2-Apr-09 James Bongo Net 106 — 112.5 28.0 — 38.2 17

8-Jul-09 James Push Net 119 108.3 — 127 2

9-Jul-09 Mattaponi Push Net 79 — 95 41.9 — 80.7 61

16-Jul-09 James Push Net 119 123.1 — 180.5 6

20-Jul-09 James Boat Electrofishing 118 — 122 104.5 — 150.0 38

Date River Gear Type TL range (mm) No. Collected
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Table 3.  Summary of larval Atlantic menhaden collections from the James and Mattaponi Rivers 

in Virginia, 2009.  Listed are range of collection dates, sample size, total length (TL), age (days), 

and hatch dates.  SE = ± 1 standard error of the mean. 

 

 
  

Mattaponi James

4 Mar - 25 Mar 09 24 Feb - 2 Apr 09

95 69

305 — 376 302 — 386

(1 Nov 08 — 11 Jan 09) (29 Oct 08 — 21 Jan 09)

339 ± 1 331 ± 2

(5 Dec 08 ± 1) (27 Nov 08 ± 2)

River

Collection Date Range

n

TL (mm)

30.9 — 38.4 28 — 38.2

Mean ± SE 35.6 ± 0.2 35.3 ± 0.2

Range

Hatch Date (Julian)

Range

Mean ± SE

Age (days)

Range 72 — 131 71 — 141

Mean ± SE 98 ± 1 104 ± 1
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Table 4. Summary of juvenile Atlantic menhaden collections from the James and Mattaponi 

Rivers in Virginia, 2009.  Listed are range of collection dates, sample size, total length (TL), age 

(days), and hatch dates (Julian).  SE = ± 1 standard error of the mean. 

 

 
  

Mattaponi James

9 July 09 8 July - 20 July 09

52 36

355 — 410 256 —356

(21 Dec 08 — 14 Feb 09) (13 Sept 08 — 22 Dec 08)

396 ± 3 303 ±4

(30 Jan 09 ± 3) (30 Oct 08 ± 4)

Hatch Date (Julian)

Range

Mean ± SE

41.9 — 80.7 104.5 — 180.5

58.9 ± 1.2 127.6 ± 2.4

114 — 199 207 — 310

158 ± 3 261 ± 4

Range

Mean ± SE

Age (days)

Range

Mean ± SE

River

Collection Date Range

n

TL (mm)
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Figure 1.  Age-0 Atlantic menhaden collections from the James River, Virginia, 2009.  Symbols 

indicate sampling locations. 
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Figure  2.  Age-0 Atlantic menhaden collections from the Mattaponi River in Virginia, 2009.  

Symbols indicate sampling locations.  
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Figure 3. Otolith from Atlantic menhaden larvae collected from the Mattaponi River of Virginia, 

21 March 2009; 99 days post-hatch; 36.7 mm TL. 
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Figure 4.  Bias plot of whole structure otolith increment blind reads made by both readers of 

larval Atlantic menhaden collected in 2009 (n=41).  Dashed line represents 1:1 agreement 

between counts made by both readers.  Solid line is the regression line of reads. 
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Figure 5.  Total length (mm) versus Age (days) relationship for larval Atlantic menhaden 

collected from the Mattaponi and James Rivers of Virginia, 2009.  The slopes of the lines are 

representative of the growth rate during residency in tidal freshwater reaches (mm d
-1

). 
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Figure 6.  Average growth rates (mm d

-1
) from individual larval Atlantic menhaden cohorts as 

designated by hatch date calculation. 
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Figure 7.  Bias plot of whole structure otolith increment counts made by two readers on juvenile 

Atlantic menhaden collected in 2009 (n=21).  Dashed line indicates 1:1 agreement between 

incremental counts made by both readers.  Solid line is the regression line. 
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Figure 8:  Total length (mm) versus Age (days) relationship for juvenile Atlantic menhaden 

collected from the Mattaponi and James Rivers of Virginia, 2009.  Individual menhaden were 

placed into 5 mm length bins and regressions were calculated using average age and length 

within each bin.  The slopes of the lines represent the growth rate during residency in tidal 

freshwater reaches (mm d
-1

). 
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